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Abstract—The paper deals with the construction and tabulation of Green’s functions in a form
suitable for use in determining natural frequencies and mode shapes of beams with intermediate
attachments and of various boundary conditions. The beam may have rotational and linear elastic
attachments, as well as rotational and linear attached inertias. Example computations are illustrated.

NOMENCLATURE

radian frequency

beam mass/unit length

beam flexural rigidity

beam length

g* = w’m/EI

z=gqL

X u arguments of Green'’s function

X, 4 x/L, u/L, respectively

¢ C,s5, S cos z, cosh z, sin z, sinh z, respectively

é,6, 5.8  cosz(l—), coshz(l —if), sinz(1 — i), sinh z(1 — i), respectively
658 cos zX, cosh z%, sin z%, sinh z%, respectively
c*, C*, s* §* cos zit, cosh zi, sin zi, sinh zi, respectively

Ny hmae

a; location of /th translational spring

ky ith translational spring

b; location of ith attached mass

m; mass of /th disc

Ip, diameteral mass moment of inertia of ith disc
kai ith rotational spring

c; location of ith attached rotational spring

) total derivative with respect to x

(X partial derivative with respect to {

A determinant of the matrix [B]

Y(x) constrained beam mode shape

{¥} [Y@)...YanYd).. . YOILY (B) ... LY (b)...LY (c}...L¥"{c,)]".

1. INTRODUCTION

Beam models with intermediate inertia and elastic attachments are a common occurrence
in practice. These attachments alter the dynamic characteristics of the base beam in manners
described by Strut and Rayleigh (1945). The effect of a mass attachment on the natural
frequencies of a beam with several boundary conditions was studied by Maltbaek (1961),
where two displacement functions were assumed for the two segments of the beam. By
application of the boundary and continuity requirements, the frequency equation appeared.
By using a Lagrangian formulation, Dowell (1979) derived the equation for the natural
frequencies of a combined system consisting of a simply-supported beam and an oscillator
(spring-mass) attached at some intermediate point on the beam. Using the direct method
stated in Maltbaek (1961), Lau (1984) derived and solved the frequency equation for a
cantilever beam with one linear and one rotational spring attached to the same point on
the cantilever. With more than one attachment at different points on the beam, the above
techniques become unwieldy, and approximate methods such as in Verniere de Irassar et
al. (1984), or the Green’s function formulation of Nicholson and Bergman (1986) may now
be applied. The use of the Green’s functions not only leads to exact results, but also involves
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less cumbersome manipulations. The use of this method depends on the availability of the
Green’s function corresponding to the beam with associated boundary conditions.

In this paper these functions as well as their relevant derivatives are determined and
tabulated for beams with general non-classical boundary conditions covering a wide range
of practical problems. These functions are presented in a separable form, where the separate
functional components are evaluated from 2 x 2 matrices.

2. THE EQUATION OF MOTION

The beam, with a segment shown in Fig. 1, has N linear springs, » rotational springs,
and r masses with both linear and rotational inertias. The exact boundary conditions need
not be specified yet.

The lateral displacement y(x, t) of the beam is governed by the differential equation :

4 F N
EIa }’(?:, t) +m y(-§3 t) _ Z kT[y(a‘,, t)é(x—a,)
ox ot i=1

A () d 0% Joy(b;, 0l .,
_Zm_,w—é—rzj—«é(x*b,)f[; Iy (9 (=5

j=1

&, 0y, D),
+; km‘“‘"’gx*A o' (x—c), (1)

where 6(x—a) is the Dirac delta function whose properties used in the text are, from
Bracewell (1978),

Jﬁ fR)8(x—aydx = f(a), @a)

j_ S (x—a)dx = —f"(a). (2b)

The standard separation of variables assumption applies to the solution, thus
yx, 1) = Y(x)e. 3)

Furthermore if G(x, u) is the Green’s function for the stated problem with specified bound-
ary conditions, then the solution to (1) with (2a), (2b) and (3) utilized is

N n
EIY(x) = — Z krG(x,a)Y(a;)— Z kG, (x,c)Y (c;)
i=1 ey

-+ zr: (Dzmj(;(x, b]) Y(bj)+ i wzlpiGu(-x, bj) Yi(bj)' (4)
=1 =1
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Fig. 1. Beam segment with general attachments.
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The Green’s function and its relevant derivatives can be given in the forms:

R AN, 2
6 = s ey L oe s
.o = e {0 PSS
6ulon) = e U s

where A, and all functions on the right-hand sides are still to be determined. If (5a),
(5b), (5¢) and (5d) are substituted into (4) and its derivative, the resulting equations in
dimensionless attachment parameters are, assuming 0 < x < u,

20.2°Y(x) = — i Kig(x,a)Y(a;)+ i z*M;g(x,b) Y (b))

+ Z 2 fOb)ILY (B)] = X 20, f (x, c)ILY ()], (6)

i=1

2AZ°[LY (x)] = — i Kov(x,a)Y(a;)+ i Z*Mo(x, b)Y (b)
+ i 22 Jih(x, b)[LY’ (b)) - z": z2Q:h(x, c)ILY ()], (7)

i=1

where

Ki = kTiL3/EI, Q,' = kR,'L/EI, Mi = mi/mL, .I‘ = Ip,'/mLJ.

3. FREQUENCIES AND MODE SHAPES

The frequencies are determined from eqns (6) and (7). Equation (6) is evaluated at all
N+rpoints of linear spring and linear inertia attachments, giving N+ r equations. Equation
(7) is then evaluated at all n+r points of rotational attachments, giving n+r equations.
The total of N+n+ 2r equations is now assembled in the matrix form

[D1{Y} = {0}. ®)
The requirement of a non-trivial solution of (8) yields the frequency equation
Ap =0 )
from which the roots z; (frequency parameters) are found, and hence the frequencies
w; = z2/Ell/mL®. (10)
The mode shapes corresponding to a given frequency z; can be obtained only to within

a constant. Thus one may specify Y;(a,) for example, and use the first N+n+2r—1
equations of (8) to find the remaining elements of {Y}. Letting

A; = Y(a)/Y(a)), i=2,...,N, (11a)
B, =Y,(b)]Y;(a)), i=1,...,r (11b)
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D‘,,'=LY}(b,~)/Y,~(a,), i=1,...,r, (11¢)
Ci=LY (c)/Y{a), i=1,...,n, (11d)

the mode shapes from (6) are:

N r
Ui(x) = -K,g,(x,a,)— Z A;Kig;(x,a;)+ z?BjiMigj(-xs b)
i=2 =1

{

+ 3 ED S b) = 2,0 f ), (12)
fe | j= |

where U;(x) = 2A,,2} Y;(x)/ Y {a,).
This completes the generalized formulae for the natural frequencies and mode shapes
via (9) and (12).

4. DETERMINATION OF THE GREEN’S FUNCTIONS

The Green’s functions for beams of generalized boundary conditions are now evaluated
for use with the standardized procedure above. The functions are assumed in the form:

D, cos gx+ D, sin gx+ D, cosh gx+ D, sinhgx, 0
Glxu) = D cos gx+ Dy sin gx+ D, cosh gx+ Dg sinh gx, L

where G{x, u) must:

(a) Satisfy two boundary conditions at each end. (Shear force and bending moment
are positive and negative respectively at x = 0, but negative and positive respectively at
x=1L)

(b) Fulfill displacement, slope and moment continuity at x = u, i.e.

Gut,u) = Gu ,u), (14a)
G (u",u) = G,(u",u), (14b)
G (u",u) = G (u,u). (14c)

(c) Satisfy a shear force discontinuity of magnitude EJ at x = y, ..
ENG (", u)— G (u™, w)] = EL (15)
Using (14a)—(15), Ds—Dy in (13) can be expressed in terms of D—-D,, thus
Ds=D,+as*, Dg=Dy—ac*, D;=D;—aS* Dg=D,+aC* (16)
where a = 1/2¢°.

Equations (16) which are true for all boundary conditions, are now used with (a) to
establish the Green’s function for a beam with any specified boundary conditions.

5. PRESENTATION OF THE GREEN’S FUNCTIONS

The Green’s functions as determined by the above procedure are now presented in the
most suitable form for numerical computations. As a result, g(x,u), f(x,u), v(x,u) and
h(x,u) in (5) are determined in a separable form for ¥ = x = 0, from

gx,u) = ¥ ()¢ (X + Y2 (P2 (%), (17a)
SOeu) = Y@@ (x) + Y2 (x), (17b)
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o(x,u) = ¥ 11 (W)G12(0) +¥21 W2 (x), (170)
h(x,u) = Y 2(0)@ 12(X) + Y22 (W) P2a(x). (17d)

Elements of the [i/] matrix are given in terms of elements of the two matrices [e] and
[e], which are in turn given in Table 5, thus

Vi) = @ (Wen—@n(we, (18a)
Y12(u) = @ra(w)er; — @2 (wey, (18b)
Yo (u) = @2 (we, — @y (e, (18¢)
Y2(u) = @r(u)er; —@a(u)ey;. (18d)

In order to minimize duplications in presenting the Tables, note is taken of the facts
that the [@] matrix contains only boundary information at x = L. Beams of the same
conditions at x = L have the same [¢] and A,,. Similarly, beams of the same end conditions
at x = 0 have the same [¢] and A,. The [e] matrix is constructed from boundary information
at both ends, and is different for all cases. A, = 0 is the frequency equation of the beam
with the specified boundary conditions but with no intermediate attachments. Finally, the
symmetry of the Green’s functions can be expressed as g(x, 1) = g(u, x), f(x,u) = v(u, x),
and h(x,u) = h(u, x). These functions are therefore given only for 0 < x € u.

6. A SPECIAL CASE

For a beam with only two intermediate elements, one linear and one rotational both
attached at x = g, expanding the corresponding 2 x 2 determinant of (9) gives rise to

K K
A} +A, [g gla,a)+ %b(a, a)] + Z;Q; [g9(a, )h(a,a) ~f(a,a)v(a,a)] =0, (19)

where a linear spring X and a rotational spring O are considered for demonstration. The
difference in square brackets of (19) can be shown to be

gla,dh(a,a)—f(a,a)v(a,a) = A AzA,. 20)

Hence each term of (19) contains the factor A,. Since A, = 0 is the frequency equation of
the beam without attachments, an attempt to solve (19) as it stands will give mixed results
for the stated problem as well as for A, = 0. Using (20), the desired form of (19) is

K 0 KQ
A+ [5?9(“’ a)+5-ha, a)]+ 2.° DoBo = 0. @n

7. EXAMPLE PROBLEMS

The formulae in Table 5 are verified as far as possible using published data where
available. For a fixed—fixed beam with one intermediate linear spring attachment, the
frequency equation from (9) is

2z°A.+Kg(a,a) = 0. 22

Using A, and g(a, @) from Table 5(b), the fundamental frequency coefficients (z1) resulting
from the solution of (22) are given in Table 1, and compared with results from Verniere de
Irassar et al. (1984).

Applying (21) to a constrained cantilever with a free tip, Table 5(c) is used, and the
frequencies for the first five modes are given for a/L = 0.8 and various combinations of X
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and Q. These results are shown in Table 2 and agree perfectly with Lau (1984). For a
cantilever with an attached disc which has both linear and rotational inertias, the frequency
equation, after applying (20) and cancellation of the common terms A,, is

4A, —2[zMg(b, b)+ 2 Th(b, b)] + 2* MIA,A, = 0. (23)

The solution of (23) for b/L = 0.4 with various values of M and J is given in Table 3 for
the first five modes (z,,n=1,...,5).

The final example is a cantilever with tip inertias and elasticities, with an intermediate
linear spring and mass with both linear and rotational inertias. The frequency determinant

Table 1. Frequency coefficients (z2) for a fixed-fixed beam with an intermediate spring
{values in brackets from Verniere de Irassar ef al. (1984)]

- |-
7 i K -
| a f
- -
K
Mode alL 1.00 10.00 50.00 100.00
0.0 22.37326 22.37326 22.37326 22.37326
(22.43) (22.43) (22.43) (22.43)
0.1 22.37407 22.38124 22.41283 22.45163
(22.44) {22.44) (22.48) (22.53)
0.2 22.38184 22.45828 22.78436 23.16301
) (22.44) (22.53) (22.90) (23.34)
0.3 22.40009 22.63808 23.62914 2473352
(22.46) (22.71) 23.77) (24.97)
04 22.42055 22.83983 24.58139 26.52217
(22.48) (22.90) {24.66) (26.64)
0.5 22.42955 22.92906 25.01149 27.35681
(22.49) (22.98) (25.03) (27.38)
0.0 61.67281 61.67281 61.67281 61.67281
0.1 61.67450 61.68962 61.75644 61.83893
2 0.2 61.68460 61.79057 62.25562 62.82330
0.3 61.69118 61.85675 62.59583 63.52522
04 61.68149 61.75998 62.11668 62.58049
0.5 61.67281 61.67281 61.67281 61.67281
0.0 120.90338 120.90338 120.90338 120.90338
0.1 120.90581 120.92787 121.02547 121.14647
3 0.2 120.91280 120.99744 121.37431 121.84669
0.3 120.90649 120.93465 121.06120 121.22276
0.4 120.90501 120.91974 120.98564 121.06909
0.5 12091156 120.98523 121.31430 121.72943
0.0 199.85944 199.85944 199.85944 199.85944
0.1 199.86232 199.88831 200.00352 200.14694
4 0.2 199.86380 199.90300 200.07828 200.29948
0.3 199.85989 199.86391 199.88187 199.90440
0.4 199.86429 199.90805 200.10313 200.34836
0.5 199.85944 199.85944 199.85944 199.85944
0.0 298.55493 298.55493 298.55493 298.55493
0.1 298.55811 298.58447 298.70117 298.84717
5 0.2 298.55615 298.56299 298.59351 298.63135
0.3 298.55811 298,58496 298.70532 208.85620
0.4 298.55493 208.55615 298.55933 298.56348

0.5  298.55859 298.58862 298.72314 298.89160
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from (9) is
2A.2° + Kg(a, a) —z*Mg(a, b) —2°Jf(a,b)
Kg(b,a)  2M.2—z*Mg(b,b)  —z5Jf(b,b) |=0. 24)
Ko(b, a) _Mo(b,B)  2A,z2—2%Jh(b,b)

Using the symmetries that g(a,b) = g(b,a) and f(a,b) = v(b,a), the first five modes
(z,,n=1,...,5), are given in Table 4, after the relevant Green’s functions were constructed
from Table 5(c).

Table 2. Frequency parameters (z,) for a cantilever with linear and rotational springs (a/L = 0.8)

Q
] & =
7 E, K
(- a 3
Q
K 0 1 10 100 1000 10000
Mode |

0 1.87510 2.07404 2.45029 2.59156 2.60974 2.61161

1 1.95026 2.13046 2.48409 2.61940 2.63687 2.63867

10 2.40287 2.50532 2.73864 2.83611 2.84894 2.85026
100 3.82712 3.84606 3.88307 3.89618 3.89781 3.89798
1000 4.67897 4.81700 5.30157 5.54922 5.57823 5.58115
10000 4.68231 4.82670 5.40219 5.81881 5.87973 5.88605

Mode 2
0 4.69409 4.85644 5.59037 6.25502 6.36381 6.37514
1 4.69414 4.85655 5.59075 6.25560 6.36442 6.37575
10 4.69458 4.85753 5.59419 6.26091 6.36996 6.38133
100 4.70206 4.87246 5.63556 6.31920 6.43036 6.44193
1000 6.20838 6.25651 6.62687 7.20711 7.30972 7.32023
10000 7.15258 7.21528 7.68878 8.78617 9.07182 9.09899

Mode 3
0 7.85476 7.90050 8.25447 9.24241 9.60612 9.65050
1 7.85508 7.90080 8.25466 9.24245 9.60614 9.65051
10 7.85798 7.90355 8.25644 9.24284 9.60629 9.65063
100 7.88786 7.93186 8.27459 9.24680 9.60775 9.65186
1000 8.24681 8.27298 8.49487 9.28862 9.62208 9.66372
10000 9.46539 9.46705 9.48157 9.58481 9.71341 9.73721

Mode 4
0 10.99554 10.99802 11.01764 11.09928 11.15645 11.16557
1 10.99585 10.99833 11.01796 11.09963 11.15682 11.16594
10 10.99865 11.00114 11.02086 11.10280 11.16010 11.16924
100 11.02691 11.02951 11.05003 11.13467 11.19318 11.20246
1000 11.32576 11.32949 11.35845 11.49620 11.53850 11.54902
10000 12.86380 12.87324 12.94350 13.16842 13.28256 13.29856

Mode 5
0 14.13717 14.14303 14.18541 14.30839 14.36520 14.37294
1 14.13729 14.14316 14.18553 14.30849 14.36530 14.37304
10 14.13844 14.14430 14.18661 14.30941 14.36614 14.37387
100 14.15006 14.15584 14.19758 14.31869 14.37465 14.38227
1000 14.27810 14.28303 14.31861 14.42158 14.46915 14.47563
10000 16.02277 16.02319 16.02606 16.03304 16.03580 16.03616

SAS 31:2-1
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Table 3. Frequency parameters (z,) for a cantilever with an intermediate mass with rotational inertia (/L. = 0.4)

J .M
- 1
b
J
Mode M 0.0 0.2 0.4 0.6 0.8 1.0
0.0 1.87510 1.59516 1.44037 1.33875 1.26484 1.20754
0.2 1.85560 1.58633 1.43514 1.33516 1.26215 1.20542
1 0.4 1.83672 1.57765 1.42996 1.33160 1.25948 1.20331
0.6 1.81846 1.56913 1.42484 1.32806 1.25683 1.20121
0.8 1.80082 1.56075 1.41978 1.32455 1.25419 1.19912
1.0 1.78378 1.55253 1.41477 1.32107 1.25157 1.19705
0.0 4.69409 3.46942 3.24743 3.16212 3.11708 3.08925
0.2 4.34004 3.46916 3.24324 3.15544 3.10889 3.08008
2 0.4 4.10057 3.46881 3.23808 3.14746 3.09925 3.06936
0.6 3.92678 3.46831 3.23166 3.13788 3.08787 3.05682
0.8 3.79409 3.46754 3.22354 3.12632 3.07442 3.04217
1.0 3.68900 3.46621 3.21311 3.11236 3.05858 3.02516
0.0 7.85476 491798 4.89924 4.89353 4.89076 4.88914
0.2 7.57369 4.48567 4.46611 4.46054 4.45791 4.45638
3 04 7.44313 4.20018 4.18058 4.17548 4.17314 4.17180
0.6 7.36903 3.99419 3.97577 3.97153 3.96966 3.96860
0.8 7.32156 3.83675 3.82111 3.81807 3.81678 3.81606
1.0 7.28861 3.71184 3.70088 3.69919 3.69852 3.69815
0.0 10.99554 8.56665 8.56039 8.55832 8.55729 8.55666
0.2 10.85163 8.28697 8.27989 8.27754 8.27636 8.27566
4 04 10.78372 8.16018 8.15267 8.15014 8.14892 8.14819
0.6 10.74503 8.08893 8.08114 8.07859 8.07725 8.07651
0.8 10.72019 8.04354 8.03554 8.03288 8.03159 8.03081
1.0 10.70293 8.01209 8.00401 8.00128 7.99996 7.99916
0.0 14.13717 12.39830 12.39337 12.39170 12.39087 12.39038
0.2 13.41916 12.22389 12.21916 12.21759 12.21683 12.21638
5 0.4 13.17939 12.12240 12.11788 12.11648 12.11573 12.11528
0.6 13.06275 12.06067 12.05640 12.05496 12.05420 12.05380
0.8 12.99424 12.02009 12.01585 12.01445 12.01374 12.01332

1.0 12.94930 11.99154 11.98733 11.98598 11.98529 11.98487
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Table 4. Frequency parameters (z,) for a cantilever with an intermediate mass and spring, with a loaded tip.
Jr =02, My = 0.2, Ky =200, Qg = 100, a/L = 0.6, /L =04, M = 0.2

M

J Mg . Jg
1 QR
- L K
b —=] j. Kg
a |
-

Mode J 0 1 10 100 1000 10000
0.0 3.85459 3.86047 391189 4.31514 4.77617 4.77644

0.2 2.75779 2.76039 2.78267 2.93176 3.17387 3.23470

[ 0.4 2.35193 2.35387 2.37052 2.48204 2.67260 2.72574
0.6 2.13444 2.13612 2.15056 2.24741 2.41603 2.46464

0.8 1.99049 1.99203 2.00518 2.09354 2.24887 2.29437

1.0 1.88482 1.88626 1.89854 1.98111 2.12713 2.17032

0.0 477723 477723 477725 477767 5.15761 5.19491

0.2 4.30778 4.31047 4.33449 4.55465 4.77619 4.77652

2 0.4 4.25334 4.25648 4.28440 4.52994 4.77619 4.77651
0.6 4.23685 4.24014 4.26929 4.52257 4.77619 4.77651

0.8 4.22891 4.23227 4.26202 4.51903 4.77619 4.77651

1.0 4.22425 4.22764 425775 4.51695 477619 477651

0.0 5.24842 5.24852 5.24946 5.26088 5.76651 6.45561

0.2 4.77789 4.77790 4.77796 4.77909 5.18382 5.21463

3 0.4 4.77781 4.77781 477787 477887 5.18196 5.21324
0.6 477778 477779 4.77784 4.77881 5.18139 5.21281

0.8 477777 4771177 4,77783 4.77879 5.18112 5.21261

1.0 477776 477777 477782 477877 5.18096 5.21249

0.0 8.09191 8.09283 8.10115 8.18491 8.98880 10.98872

0.2 5.26036 5.26045 5.26128 5.27141 5.79654 6.78107

4 0.4 5.25952 5.25961 5.26044 5.27067 5.79514 6.77156
0.6 5.25926 5.25936 5.26019 5.27044 5.79468 6.76850

0.8 5.25914 5.25923 5.26007 5.27033 5.79445 6.76698

1.0 5.25907 5.25916 5.26000 5.27027 5.79432 6.76606

0.0  11.08776 11.08777 11.08783 11.08840 11.09519 11.52128

0.2 8.91371 8.91434 8.92005 8.97661 9.49709 11.14646

5 04 8.90768 8.90832 8.91403 8.97103 9.49447 11.14622
0.6 8.90567 8.90632 8.91204 8.96918 9.49361 11.14614

0.8 8.90467 8.90532 8.91104 8.96825 9.49317 11.14610

1.0 8.90407 8.90471 8.91047 8.96769 9.49292 11.14607
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Table 5. Tables of Green's functions
Subscripts R and L represent right (x = L) and left (x = 0) boundary attachments, respectively. Subscript P refers
to diametral moment of inertia. Superscripts R and T denote rotational and translational springs

Q. = kRLIEI Qu = kRLIEL K, = kTL*[EI, Ke = kLL3/EIL
Mg = mgimL, My = myjmL, Jy = LegjmL? J, = Ly fmL’.

Where used
K . K,
“=%~ =g_5, y =y —zMy, €=%~zﬂh. s=—(-::§""zML).
PSRRI < S o
oo [-¢e -8 —L&

Table 5(a). Simply-supported beam
QL

& —=2

Qr

~s+PBeta(fls+S)+e+C) S+ PCHa(P(s+S)+c+C)

a8 iraG+3)
9= S—a(c~8) C+aG+S |

s—a(c—C) S—alc—C)
i =[ }

_ i—8 —é+C
el = ~(§+ )+ BE-C) (+CHBE+S) |

Table 5(b). Fixed—fixed beam

SMAMVA

Table 5(c). Cantilever with end restraints and load
Mg, Jg
Qg

Kr

[ —e—C-ils+59) —s—S-}-/I(c—C)]
€[=] S—pe=C) —c—Coy(s—9) |

[#] (sameasin §(b)),

| —s=-8+ie-0 é+€+/1(§+§)]
ol = — b Cp(—5+8) —§+8S+9¢-O) |
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Table 5(d). Pin-free with end restraints and load
Mg . dx
QL Qr

=

Kgr
[ ~stActalc+CHAHS)  S+ACHaAe+CHAs+S) ]
el = —o—ys+a{ =5+ S+Pc—C)) C—yS+a(—s+S+y(c—CN |

[9] (same asin 5(a)),
[@] (same asin 5(c)).

Table 5(e). Propped cantilever with end restraint

: )

Qg

i c=C s—§
tel = —c—C—B(s+S) —s—S+p(c~-O) }
[#] (sameasin 5(b)),
[p] (sameasin 5(a)).

Table 5(f). Elastically supported beam with end restraint and load

QML'JL MR’JR
L
Qg

KL KR

fe] = —c=As+N(CHASY+v(S+AC) —s+ic+pu(C+AS)+n(S+AC)
T 5=+ (S—yOY+C—S)  —e—ys+p(S—yO) 4+ C—38) |

i+nC+v8S  —5+n85+4C
1=, & 5. ;
§+pC+nS  e+pS+9C

[¢] (sameasin5(c)).

8. DISCUSSION

An exact method for determining the dynamic characteristics of Enler-Bernoulli beams
with attached masses and springs is given, using Green’s functions. These functions have
been tabulated for beams of several common boundary conditions. Some example problems
with known solutions are considered, and the results confirm the correctness of the method.
Moreover, the method accommodates any number of spring or mass attachments, the final
result being the evaluation of a determinant (=0) whose elements are determined from the
tabulated Green’s functions. The method is also applicable to multi-span beams, and to the
important class of periodic structures such as coupled bladed disk assemblies of a turbine
shaft.
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